ILLINOIS TECH
Graduate Programs

Armour College of Engineering
Educating a New Generation of Engineers

Master's Degrees
- Advanced Manufacturing
- Architectural Engineering
- Biological Engineering
- Biomedical Imaging and Signals
- Chemical Engineering
- Chemical Engineering with E3 Specialization
- Computational Engineering
- Construction/Engineering and Management
- Cybersecurity Engineering
- Electrical and Computer Engineering
- Electricity/Plastics
- Energy/Systems
- Engineering Management
- Engineering in Advanced Manufacturing
- Engineering in Energy Systems
- Engineering in Manufacturing
- Engineering in Materials Science and Engineering
- Engineering in Mechanical and Aerospace Engineering
- Engineering in Urban Systems
- Environmental Engineering
- Geospatial Engineering
- Network Engineering
- Pharmaceutical Engineering
- Power Engineering
- Public Works/Infrastructure Engineering and Management
- Structural Engineering
- Telecommunications and Software Engineering
- Urban Systems/Engineering
- Transportation Engineering
- VLSI and Microelectronics

Master of Science Degrees
- Advanced Manufacturing
- Architectural Engineering
- Biological Engineering
- Chemical Engineering
- Chemical Engineering with E3 Specialization
- Civil Engineering
- Computer Engineering
- Computer Engineering and Electrical Engineering
- Master of Science Computer Science/ Master of Chemical Engineering (Dual Degree)
- Electrical Engineering
- Environmental Engineering
- Manufacturing/Engineering
- Materials Science and Engineering
- Mechanical and Aerospace Engineering

Doctoral Degrees
- Biomedical Engineering
- Chemical and Biological Engineering
- Chemical Engineering with E3 Specialization
- Civil Engineering
- Computer Engineering
- Electrical Engineering
- Environmental Engineering
- Materials Science and Engineering
- Mechanical and Aerospace Engineering

Graduate Certificates
- Advanced Electronics
- Air Resources
- Applied Electromagnetics
- Architectural Engineering
- Biological Engineering
- Communication Systems
- Computer Engineering
- Computer Integrated Design and Manufacturing
- Construction Management
- Control Systems
- Current Energy Issues
- Earthquake and West Engineering Design
- Emergency Management
- Fire Protection and Safety Engineering/Geoenvironmental Engineering
- Hazardous Waste Engineering
- Indoor Air Quality
- Infrastructure Engineering and Management
- Particle Processing
- Polymer Science and Engineering
- Power Electronics
- Power Engineering
- Process Operations Management
- Product Quality and Reliability Assurance
- Signal/Processing
- Transportation Systems Planning
- Waste and Wastewater Treatment
- Wireless Communications Engineering

For information on our co-terminal degrees, please visit engineering.iit.edu/programs/co-terminal-degrees.
A TRADITION OF EXCELLENCE

Armour College of Engineering has been preparing students to become engineers since 1890—first as Armour Institute of Technology and today as part of Illinois Institute of Technology. A lot has changed in the past 127 years, but some things remain the same. Armour College is committed to preparing students to lead in a rapidly changing, technology-driven, global society—and we are proud to say that our students continue to be among the most sought-after engineering professionals at companies across the United States and around the world.

Armour College graduates have several distinct advantages over other engineering students. They become part of an alumni community that includes Martin Cooper (EE ’50, M.S. ’57), the inventor of the cell phone. They use emerging technologies in their courses and take classes in the newly renovated John T. Rettallata Engineering Center.

Our graduate engineering education is aligned with global priorities. Our full-time faculty of nearly 100 scholars, researchers, and practitioners are engaged in fundamental and applied research that has global impact. Armour’s distinctive education is also reflected in its focus on the entrepreneurial and ethical aspects of the engineering profession. When you graduate with an engineering degree from Illinois Tech, you will be well prepared to innovate, manage change—and lead.

Research priorities include advanced materials; autonomous systems (bioengineering, food science/engineering, food systems and sustainability; environmental); building materials and systems; energy and sustainability; manufacturing; multimedia big data analytics; network and communications; solar power; and systems biology.

- The Department of Biomedical Engineering is nationally recognized for research in medical imaging, cell and tissue engineering, and neural engineering, with five members of the American Institute of Medical and Biological Engineering as faculty.
- The Department of Electrical and Computer Engineering counts Martin Cooper (EE ’50, M.S. ’57), the leader of the team that developed the first cell phone, among its distinguished alumni.
- Thirty-eight Armour alumni and three members of the faculty are members of the National Academy of Engineering.

Our Department of Chemical and Biological Engineering—established in 1901—is one of the first chemical engineering programs in the country.

RESEARCH INSTITUTES

Pritzker Institute of Biomedical Science and Engineering

The Pritzker Institute enhances biomedical science and engineering research activities at Illinois Tech through partnership with prestigious laboratories, including those with Argonne National Laboratory and the University of Chicago. The centers within Pritzker Institute include the Medical Imaging Research Center, the Center for Integrative Neuroscience and Neuroengineering, the Engineering Center for Diabetes Research and Education, the Center for Molecular Study of Condensed Soft Matter, and the Biophysics Collaborative Access Team.

Wanger Institute for Sustainable Energy Research (WISER)

WISER’s goal is to improve energy efficiency, enhance power reliability and security, minimize pollution, and continue the decarbonization of the global energy system in the most cost-efficient way possible. Illinois Tech researchers believe that the endpoint of this evolution will be electrification of most stationary energy uses with such high-tech renewables as photovoltaic, solar thermal, and wind energy, and the use of hydrogen as the dominant transportation fuel in fuel-cell-powered electric vehicles. Housed within WISER, the Robert W. Galvin Center for Electricity Innovation pursues groundbreaking work in the generation, transmission, distribution, management, and conservation of electricity.