Thinking about spending some time back in Chicago this summer for work or play? Summer is also a great time to get ahead in your studies. Enclosed you will find an exciting list of course offerings this summer at Illinois Institute of Technology.

At Illinois Tech, we take summer seriously.

Some of our best courses are taught in summer by our best faculty—all with a low faculty-to-student ratio. If you are thinking about getting ahead in your major, or just exercising your mind under a shade tree, consider spending some time this summer at Illinois Tech.

It is easy to register.

Just visit summer.iit.edu and fill out the quick app by providing your contact information and uploading an unofficial transcript from your current school. Scholarships are available. Upon receipt of your quick app, you will receive an admission decision and financial aid package within one week.

We look forward to seeing you on campus this summer!

Questions?

Contact the IIT One Stop
Phone: 312.567.3810
Email: onestop@iit.edu
WE HAVE GREAT CLASSES TO CHOOSE FROM, TAKE A LOOK:

Please note that this course list is an abbreviated list of our summer classes. Access to our entire offerings can be found online at summer.iit.edu. Schedules and course offerings are subject to change.

ENGINEERING

Introduction to Engineering and Design
ENGR 111-01, LEC/ CRN: 33267
Professor: Anthony Svozil
TR / 10:00 a.m. to 12:30 p.m.
Mies / TB-050
Session C / July 5–August 16

This course introduces the student to the basic concepts and practices common to engineering. The engineering design process is presented through examples and hands-on projects. Along with fundamental engineering principles, communication skills, computer applications, and professional ethics will be included. Upon successful completion, the student will have been provided a foundation for further study in engineering.

Introduction to Robotics
ENGR 112-01, LEC/ CRN: 33268
Professor: Anthony Svozil
MW / 10:00 a.m. to 12:30 p.m.
Mies / TB-050
Session C / July 5–August 16

Introductory experience to the field of robotics. Included in this experience will be the engineering design process, a university-level programming language, and open-ended problem solving strategies. Students, working in small hands-on teams, will be presented with several authentic design challenges. To meet these challenges, students will design, build, and program an appropriate LEGO® EV3 robot with National Instruments LabVIEW software. Teams will document and present their design solutions. Additional topics may include motor control, gear ratios, torque, friction, sensors, timing, program loops, logic gates, decision-making, and timing sequences. The course incorporates Next Generation Science Standards (NGSS).

MATH 151-01, LAB/ CRN: 31361
Professor: Fred Weening
MW / 11:05 a.m. to 12:20 p.m.
Mies / SB-112F
Session B / June 6–July 30

MATH 152-01, LAB/ CRN: 30225
Professor: David Maslanka
MW / 11:05 a.m. to 12:20 p.m.
Mies / SB-112E
Session B / June 6–July 30

MATH 152-01, LEC/ CRN: 30225
Professor: David Maslanka
TR / 10:00 a.m. to 12:20 p.m.
Mies / SB-238
Session B / June 6–July 30

A KEY TO OUR COURSE LISTINGS

ARCH 000-00, LEC/ CRN: 33267
Professor: Name
TR / 1:30 to 4:30 p.m.
Mies / CR-001
B Session / June 6–July 30

PLEASE NOTE: Illinois Tech Main Campus building codes are labeled on the campus map located on the previous page of this booklet.

Learn online! Internet-based courses are also available.
Calculus II

MATH 152-01, LEC/ CRN: 30225
Professor: David Maslanka
MW / 10:00 to 10:55 a.m.
Mies / RE-242
Session B / June 6–July 30

Introduction to Differential Equations

MATH 252-01, LEC/ CRN: 30227
Professor: George Zazi
MWR / 12:15 to 2:20 p.m.
Mies / SB-239
Session B / June 6–July 30

Multivariate and Vector Calculus

MATH 251-01, LEC/ CRN: 30226
Professor: Andre Adler
MWR / 10:00 a.m. to 12:05 p.m.
Mies / SB-239
Session B / June 6–July 30

Probability and Statistics

MATH 474-01, LEC/ CRN: 30229
Professor: Arthur Lubin
MW / 10:00 a.m. to 12:25 p.m.
Mies / SB-225
Session B / June 6–July 30

Elementary probability theory including discrete and continuous distributions, sampling, estimation, confidence intervals, hypothesis testing, and linear regression. Credit not granted for both MATH 474 and MATH 475.

ARCHITECTURE

Advanced Modeling

ARCH 436-01, LAB/ CRN: 32679
Professor: Alphonso Peluso
TR / 10:00 a.m. to 12:25 p.m.
Mies / TN-110
Session B / June 6–July 30

This course will focus on 3D modeling of complex geometric components in architecture and design. Concepts explored will concentrate on the advancement of digital design as an iterative process. Various modeling types covered are (1) Explicit Modeling, (2) NURBS Surface Modeling, (3) Parametric Modeling, and (4) Generative Components and Response Modeling. Output will utilize digital fabrication methods as support of the iterative design process.

Architecture and Furniture

ARCH 447-01, B/ CRN: 32680
Professor: Paul Pettigrew
TR / 6:00 to 8:25 p.m.
Mies / TN-216
Session B / June 6–July 30

Individually or in small groups, students will design and fabricate furniture as part of a collectively developed master plan. Students explore historic and contemporary furniture design, theory, materials, and fabrication techniques. Lectures and discussions will focus on the relationship between architecture and furniture in its 500-year history, the design process, fabrication technologies and techniques, drawing and modeling as a means of exploration, representation, presentation, and fabrication. Labs will allow students the opportunity to experience in a semester the traditional sequence of master plan, schematic design, design development, construction drawings, fabrication, and use.

Topics in Modernism

ARCH 456-01, LEC/ CRN: 31456
Professor: Colleen Humer
International Program
Session A / May 23–July 2

Historical and critical study of a significant topic in architecture and urban design tied to important building types, architects, architectural movements, historical periods, or theoretical trends of lasting significance in the twentieth century. Conducted as a seminar, this course analyzes texts, writings, and buildings as students prepare research papers, presentations, and other projects. Recent courses have examined modernism in post-World War II Europe and the United States and the history of the skyscraper from the Chicago school to the present.

Visual Training I

ARCH 331-01, LEC/ CRN: 33107
Professor: Kristin Jones
MW / 10:00 a.m. to 12:25 p.m.
Mies / TC-1C8-1
Session B / June 6–July 30

Aesthetic expression as experience. Exercises in the study of form: proportion and rhythm, texture and color, mass and space. Exercises in visual perception and aesthetic judgment. Isolation and analysis; interdependence and integration of sensuous qualities. Aesthetic unity under restrictive conditions.
Visual Training II
ARCH 332-01, LEC/CRN: 33108
Professor: Kristin Jones
MW / 1:50 to 4:15 p.m.
Mies / TBD
Session B / June 6–July 30

Aesthetic expression as experience. Exercises in the study of form: proportion and rhythm, texture and color, mass and space. Exercises in visual perception and aesthetic judgment. Isolation and analysis; interdependence and integration of sensuous qualities. Aesthetic unity under restrictive conditions.

ECONOMICS

 Principles of Economics
ECON 211-02, LEC/CRN: 31872
Professor: Edward Stuart
Internet Course
Session A / May 23–July 2

The determination of output, employment, and the rate of inflation. Topics include a broad-based discussion of the controversies in macro-economics, the appropriate use of fiscal and monetary policy, the effects of a budget deficit, determination of the rate of exchange, and the trade deficit. Offered in fall and spring.

CIVIL AND ARCHITECTURAL ENGINEERING

Concrete and Foundation Design
CAE 432-01, LEC/CRN: 31722
Professor: Jamshid Mohammadi
MW / 9:00 to 11:30 a.m.
Mies / SB-204
Session B / June 6–July 30

Design of reinforced concrete building frames and continuous structures. Design of girders, slabs, columns, foundations, and retaining walls.

Concrete and Foundation Design
CAE 432-02, LEC/CRN: 31723
Professor: Jamshid Mohammadi
Internet Course
Session B / June 6–July 30

Design of reinforced concrete building frames and continuous structures. Design of girders, slabs, columns, foundations, and retaining walls.

Construction Contract Administration
CAE 473-01, LEC/CRN: 30312
Professor: David Arditi
MW / 6:25 to 9:05 p.m.
Mies / SB-220
Session B / June 6–July 30

Design of Masonry and Timber Structures
CAE 436-01, LEC/CRN: 30639
Professor: Domingo Carreira
TR / 6:25 to 9:05 p.m.
Mies / SB-212
Session B / June 6–July 30

Design of unreinforced and reinforced masonry structural elements and structures. Serviceability and ultimate capacity design. Seismic response, resistance, and design. Design of wood columns and bending members. Mechanical fasteners and connectors. Instructor’s consent may be granted to students who do not meet the prerequisite.

Design of Masonry and Timber Structures
CAE 436-02, LEC/CRN: 32510
Professor: Domingo Carreira
Internet Course
Session B / June 6–July 30

Design of unreinforced and reinforced masonry structural elements and structures. Serviceability and ultimate capacity design. Seismic response, resistance, and design. Design of wood columns and bending members. Mechanical fasteners and connectors. Instructor’s consent may be granted to students who do not meet the prerequisite.

Engineering Geology
CAE 221-01, LEC/CRN: 33216
Professor: Jeff Budiman
MW / 1:30 to 4:00 p.m.
Mies / WH-117
Session A / May 23–July 2

Geology and its relationship to civil engineering; minerals; rocks; soil formation; geologic structure; groundwater hydraulics; frost action in soils, landslides, shoreline erosion, bluff instability; earthquakes; air photo interpretation, soil and rock mechanics in relation to engineering geology; subsurface exploration; dams, reservoirs, tunnels; case-history illustrations.

Fire Protection and Life Safety in Building Design
CAE 425-01, LEC/CRN: 31727
Professor: David DeBord
TR / 5:00 to 7:20 p.m.
Mies / AM-222
Session C / July 5–August 13

Fundamentals of building design for fire and life safety. Emphasis on a systematic design approach. Basic considerations of building codes, fire loading, fire resistance, exit design, protective systems, and other fire protection systems.

Sprinklers, Standpipes, Fire Pumps, Special Suppression, and Detection Systems
CAE 422-01, LEC/CRN: 31958
Professor: David DeBord
MW / 5:00 to 7:20 p.m.
Mies / WH-116
Session A / May 23–July 2

Review and introduction to fluid dynamics applied to sprinklers, standpipes, fire pumps, and special suppression systems; hydraulic design criteria and procedures for sprinklers requirements, standpipes, fire pumps, special suppression systems, and detection and alarm systems using nationally recognized design (National Fire Protection Association) standards, water supply requirement systems and distributions.
Steel Design

CAE 431-01, LEC/ CRN: 32691
Professor: TBD
TR / 5:00 to 7:25 p.m.
Mies / TBD
Session B / June 6–July 30

Design of steel beams, plate girders, and beam columns. Bolted and welded connections. Design of typical frame systems.

Steel Design

CAE 431-02, LEC/ CRN: 33153
Professor: TBD
Internet Course
Session B / June 6–July 30

Design of steel beams, plate girders, and beam columns. Bolted and welded connections. Design of typical frame systems.

Structural Analysis I

CAE 304-01, B/ CRN: 31101
Professor: TBD
MW / 5:00 to 8:10 p.m.
Mies / WH-117
Session A / May 23–July 2

Thermal-Fluids Engineering I

CAE 208-01, LEC/ CRN: 31478
Professor: Mark Snyder
Internet Course
Session A / May 23–July 2

Basic principles of thermodynamics applied to engineering systems using pure substances and mixtures as working fluids. Direct application of the laws of thermodynamics to analysis of closed and open systems, mass and energy flow. Extensive analysis of isentropic processes in cycles, analysis of gas mixtures and psychometrics in heating and cooling systems. Introduction to fluid mechanics and analysis of fluid statics problems.

Thermal-Fluids Engineering II

CAE 209-01, LEC/ CRN: 31479
Professor: Mark Snyder
Internet Course
Session C / July 5–August 13

Complete the development of fluid mechanics and introduce and develop heat and mass transfer analysis techniques. Description and analysis of fluid kinematics, energy and momentum equations applied to internal/external flow in building engineering systems. Development and application of convection, conduction and radiation to one-, two- and three-dimensional systems in steady state and transient regimes of operation as applied to building materials and geometries.

ENGINEERING GRAPHICS

Computer Graphics for Non-Engineers

EG 425-01, B/ CRN: 31004
Professor: William Briggs
MW / 5:00 to 7:40 p.m.
Mies / RE-029
Session B / June 6–July 30

Principles and applications of computer graphics in business and nontechnical fields. Study of computer graphics hardware and software systems. Use of computer in producing charts, graphs, and technical drawings. Use of PC-CAD in problem solving and design. Credit for this course is not applicable to an engineering degree. Requires junior standing.

Computer Graphics in Engineering

EG 419-01, B/ CRN: 31003
Professor: William Briggs
MW / 5:00 to 7:40 p.m.
Mies / RE-029
Session B / June 6–July 30

Techniques of PC-based (AutoCAD) computer-aided drawing and design. Study of computer graphic hardware and software systems through demonstrations and use. Both 2D and 3D representation of components and assemblies from various engineering disciplines. Requires junior standing.

Introduction to Building Information Modeling

EG 430-01, LEC/ CRN: 32666
Professor: Julide Demirdoven
MW / 5:30 to 7:55 p.m.
Mies / AM-218
Session B / June 6–July 30

Fundamentals and practical use of information technologies in design; basic concepts of building information modeling (BIM); review of software and technology available for BIM; practical use of BIM in design for creating a site, viewing a model, starting a project, working in the AutoDesk “Revit” Environment, adding basic building elements to a project, conceptual energy analysis, designing a preliminary layout, and presenting a project.

Mechanical Design Graphics

EG 405-01, B/ CRN: 32775
Professor: James Novak
TR / 8:45 to 11:30 a.m.
Mies / RE-029
Session B / June 6–July 30

Basic concepts of mechanical design and analysis. Advanced design layouts, details, assemblies, tolerance systems, surface finish control, materials, processes, ANSI drafting standards, engineering design processes, systems and procedures, application of computers to design, and CAD/CAM. Requires junior standing.

Technical and Pictorial Illustration

EG 406-01, B/ CRN: 32978
Professor: James Novak
Mies / TBD
Session B / June 6–July 30

Chemical and Biological Engineering Laboratory I

CHE 317-01, B/ CRN: 30255
Professor: Nader Aderangi
MW / 5:00 to 8:40 p.m.
Mies / PH-109
Session B / June 6–July 30

Laboratory work in the unit operations of chemical engineering, fluid flow, heat transfer, and other selected topics.

Chemical and Biological Engineering Laboratory II

CHE 418-01, B/ CRN: 30256
Professor: Nader Aderangi
TR / 5:00 to 7:40 p.m.
Mies / PH-109
Session B / June 6–July 30

Laboratory work in distillation, humidification, drying, gas absorption, filtration, and other areas.

Process Modeling and System Theory

CHE 433-01, LEC/ CRN: 31398
Professor: Donald Chmielewski
MW / 12:10 to 2:50 p.m.
Mies / SB-212
Session B / June 6–July 30

CHE 433-02, LEC/ CRN: 31612
Professor: Donald Chmielewski
Internet Course
Session B / June 6–July 30

Chemistry

Introduction to Research

CHEM 450-172, LAB/ CRN: 32773
Professor: Aditya Unni
Mies / TBD
Session B / June 6–July 30

Required for chemistry majors. Designed to give research experience in a faculty research laboratory.

Introduction to Research

CHEM 450-162, LAB/ CRN: 32776
Professor: Rong Wang
Mies / TBD
Session B / June 6–July 30

Required for chemistry majors. Designed to give research experience in a faculty research laboratory.

Introduction to Research

CHEM 450-173, LAB/ CRN: 32879
Professor: Andrey Rogachev
Mies / TBD
Session B / June 6–July 30

Required for chemistry majors. Designed to give research experience in a faculty research laboratory.

Organic Chemistry I

CHEM 237-01, LEC/ CRN: 30697
Professor: TBD
T / 9:00 to 11:40 a.m.
Mies / SB-239
Session B / June 6–July 30

The constitution and properties of the selected classes of organic compounds with considerable attention to stereochemistry and reaction mechanisms. The laboratory work involves the preparation of simple organic compounds using basic synthetic techniques.

Organic Chemistry Laboratory

CHEM 240-01, LEC/ CRN: 33140
Professor: TBD
T / 9:00 to 11:40 a.m.
Mies / PH-109
Session B / June 6–July 30

Basic techniques for advanced organic preparations. Interpretation of scientific results including percent yield, melting point, boiling point, IR, and NMR spectra.

Principles of Chemistry II with Laboratory

CHEM 125-01, LEC/ CRN: 33136
Professor: TBD
MW / 9:00 to 11:40 a.m.
Mies / AM-222
Session B / June 6–July 30

A continuing introduction to the foundations of chemistry, including: chemical equilibria; the chemistry of acids and bases; solubility and precipitation reactions; kinetics; thermodynamics; electrochemistry; nuclear chemistry; and the basics of organic chemistry.
Principles of Chemistry II Without Laboratory

CHEM 126-01, LEC/CRN: 33138

Professor: TBD
MW / 9:00 to 11:40 a.m.
Mies / SB-113
Session B / June 6–July 30

Same as CHEM 125 except without the laboratory.

COMPUTER SCIENCE

Computer Organization and Assembly Language Programming

CS 350-01, LEC/CRN: 33083

Professor: Michael Choi
MW / 5:00 to 8:10 p.m.
Mies / SB-225
Session A / May 23–July 2

Introduction to the internal architecture of computer systems, including micro-, mini-, and mainframe computer architectures. Focuses on the relationship among a computer’s hardware, its native instruction set, and the implementation of high-level languages on that machine. Uses a set of assembly language programming exercises to explore and analyze a microcomputer architecture. Credit will not be granted for both CS 350 and ECE 242.

Data Communications

CS 455-01, LEC/CRN: 31091

Professor: Edward Chlebus
MW / 8:50 a.m. to 12:00 p.m.
Mies / SB-201
Session A / May 23–July 2

Introduction to data communication concepts and facilities with an emphasis on protocols and interface specifications. Focuses on the lower four layers of the ISO-OSI reference model.

Data Communications

CS 455-02, LEC/CRN: 31092

Professor: Edward Chlebus
Internet Course
Session A / May 23–July 2

Introduction to data communication concepts and facilities with an emphasis on protocols and interface specifications. Focuses on the lower four layers of the ISO-OSI reference model.

Data Communications

CS 455-03, LEC/CRN: 31093

Professor: Edward Chlebus
India International Internet
Session A / May 23–July 2

Introduction to data communication concepts and facilities with an emphasis on protocols and interface specifications. Focuses on the lower four layers of the ISO-OSI reference model.

Data Structures and Algorithms

CS 331-02, B/CRN: 33261

Professor: Michael Saelee
Internet Course
Session A / May 23–July 2

Implementation and application of the essential data structures used in computer science. Analysis of basic sorting and searching algorithms and their relationship to these data structures. Particular emphasis is given to the use of object-oriented design and data abstraction in the creation and application of data structures.

Database Organization

CS 425-01, LEC/CRN: 31621

Professor: Jason Arnold
TR / 6:00 to 9:10 p.m.
Mies / SB-204
Session B / June 6–July 30

Overview of database architectures, including the Relational, Hierarchical, Network, and Object Models. Database interfaces, including the SQL query language. Database design using the Entity-Relationship Model. Issues such as security, integrity, and query optimization.

Database Organization

CS 425-02, LEC/CRN: 31623

Professor: Jason Arnold
Internet Course
Session B / June 6–July 30

Overview of database architectures, including the Relational, Hierarchical, Network, and Object Models. Database interfaces, including the SQL query language. Database design using the Entity-Relationship Model. Issues such as security, integrity, and query optimization.

Database Organization

CS 425-03, LEC/CRN: 31824

Professor: Jason Arnold
India International Internet
Session B / June 6–July 30

Overview of database architectures, including the Relational, Hierarchical, Network, and Object Models. Database interfaces, including the SQL query language. Database design using the Entity-Relationship Model. Issues such as security, integrity, and query optimization.

Questions?

Contact the IIT One Stop

Phone: 312.567.3810
Email: onestop@iit.edu
Introduction to Advanced Studies I

CS 401-01, LEC/ CRN: 32270
Professor: Michael Saelee
MW / 1:00 to 4:10 p.m.
Mies / SB-204
Session A / May 23–July 2

First course in a two-course sequence that is designed to prepare students for graduate study in computer science. Explores the implementation and application of fundamental data structures and algorithms with an emphasis on object-oriented programming in Java. Examines the relationship between these elements and the mathematical structures that form the foundation of computer science. This course does not apply toward M. S./Ph. D. credit in Computer Science.

Introduction to Advanced Studies I

CS 401-02, B/ CRN: 33244
Professor: Michael Saelee
Internet Course
Session A / May 23–July 2

First course in a two-course sequence that is designed to prepare students for graduate study in computer science. Explores the implementation and application of fundamental data structures and algorithms with an emphasis on object-oriented programming in Java. Examines the relationship between these elements and the mathematical structures that form the foundation of computer science. This course does not apply toward M. S./Ph.D. credit in Computer Science.

Introduction to Advanced Studies II

CS 402-01, LEC/ CRN: 33087
Professor: Michael Choi
MW / 5:00 to 8:10 p.m.
Mies / SB-225
Session A / May 23–July 2

Second course in a two-course sequence that is designed to prepare students for graduate study in computer science. Explores the development of the multiple layers of software that form a sophisticated software system, from device drivers to application interfaces to user interfaces. Examines how computer architecture influences software development. Emphasizes the design and implementation of interrupt-driven/event-driven software.

Introduction to Computer Programming

CS 105-01, LEC/ CRN: 30164
Professor: Jon Hanrath
TR / 8:50 to 10:55 a.m.
Mies / SB-220
Session A / May 23–July 2

Introduces the use of high-level programming language as a problem-solving tool, including basic data structures and algorithms, structured programming techniques, and software documentation. Designed for students who have had little or no prior experience with computer programming.

Laboratory

CS 105-L01, LAB/ CRN: 31608
Professor: Jon Hanrath
TR / 11:00 a.m. to 12:00 p.m.
Mies / SB-108
Session A / May 23–July 2

Mobile Applications Development

CS 442-01, LEC/ CRN: 33089
Professor: Michael Saelee
MW / 6:00 to 9:10 p.m.
Mies / SB-111
Session A / May 23–July 2

Students will learn a variety of software engineering techniques and design patterns to assist in the rapid development and prototyping of applications, leveraging frameworks and APIs provided by current mobile development platforms (such as Android and iOS). Application lifecycles, data management and persistence mechanisms, and user interface design, among other topics, will be covered. Industry speakers will be invited to speak about best practices. Students (individually or in teams) will take ideas from concept to final implementation and will present their work at the end of the semester. When appropriate, students may take the additional step of deploying their work on the appropriate application marketplace(s).

Object Oriented Design and Programming

CS 445-01, LEC/ CRN: 33090
Professor: Omar Aldawud
TR / 6:00 to 9:10 p.m.
Mies / SB-220
Session A / May 23–July 2

Introduction to methodologies for object-oriented design and programming. Examines the object model and how it is realized in various object-oriented languages. Focuses on methods for developing and implementing object-oriented systems.

Object Oriented Design and Programming

CS 445-02, LEC/ CRN: 33091
Professor: Omar Aldawud
Internet Course
Session A / May 23–July 2

Introduction to methodologies for object-oriented design and programming. Examines the object model and how it is realized in various object-oriented languages. Focuses on methods for developing and implementing object-oriented systems.

Object-Oriented Programming I

CS 115-01, LEC/ CRN: 31087
Professor: Jon Hanrath
TR / 1:00 to 3:05 p.m.
Mies / SB-112E
Session A / May 23–July 2

Introduces the use of a high-level object-oriented programming language as a problem-solving tool, including basic data structures and algorithms, object-oriented programming techniques, and software documentation. Designed for students who have had little or no prior experience with computer programming. For students in CS and CS-related degree programs.
Object-Oriented Programming I

CS 115-02, B/ CRN: 33080
Professor: George Koutsogiannakis
TR / 8:50 a.m. to 12:00 p.m.
Mies / SB-108
Session C / July 5–August 13

Introduces the use of a high-level object-oriented programming language as a problem-solving tool, including basic data structures and algorithms, object-oriented programming techniques, and software documentation. Designed for students who have had little or no prior experience with computer programming. For students in CS and CS-related degree programs.

Object-Oriented Programming II

CS 116-01, B/ CRN: 30165
Professor: George Koutsogiannakis
TR / 1:00 to 4:10 p.m.
Mies / SB-108
Session C / July 5–August 13

Introduces more advanced elements of object-oriented programming, including dynamic data structures, recursion, searching and sorting, and advanced object-oriented programming techniques. For students in CS and CS-related degree programs.

Operating Systems

CS 450-01, LEC/ CRN: 30187
Professor: Sean Wallace
MW / 6:00 to 9:10 p.m.
Mies / SB-201
Session A / May 23–July 2

Introduction to operating system concepts including system organization for uniprocessors and multiprocessors, scheduling algorithms, process management, deadlocks, paging and segmentation, files and protection, and process coordination and communication.

Systems Programming

CS 351-01, LEC/ CRN: 30168
Professor: Michael Saelee
MW / 1:00 to 4:10 p.m.
Mies / SB-201
Session C / July 5–August 13

Examines the components of sophisticated multilayer software systems, including device drivers, systems software, applications interfaces, and user interfaces. Explores the design and development of interrupt-driven and event-driven software.

ELECTRICAL AND COMPUTER ENGINEERING

Circuit Analysis I

ECE 211-01, LEC/ CRN: 33372
Professor: Suresh Borkar
MW / 1:50 to 4:30 p.m.
Mies / TBD
Session B / June 6–July 30

Ohm’s Law, Kirchhoff’s Laws, and network element voltage-current relations. Application of mesh and nodal analysis to circuits. Dependent sources, operational amplifier circuits, superposition, Thévenin’s and Norton’s Theorems, maximum power transfer theorem. Transient circuit analysis for RC, RL, and RLC circuits. Introduction to Laplace Transforms. Laboratory experiments include analog and digital circuits; familiarization with test and measurement equipment; combinational digital circuits; familiarization with latches, flip-flops, and shift registers; operational amplifiers; transient effects in first-order and second-order analog circuits; PSpice software applications. Concurrent registration in MATH 252 and ECE 218.

Circuit Analysis II

ECE 213-01, LEC/ CRN: 30339
Professor: Suresh Borkar
TR / 1:50 to 4:30 p.m.
Mies / TBD
Session B / June 6–July 30

Sinusoidal excitation and phasors. AC steady-state circuit analysis using phasors. Complex frequency, network functions, pole-zero analysis, frequency response, and resonance. Two-port networks, transformers, mutual inductance, AC steady-state power, RMS values, introduction to three-phase systems and Fourier series. Design-oriented experiments include counters, finite state machines, sequential logic design, impedances in AC steady-state, resonant circuits, two-port networks, and filters. A final project incorporating concepts from analog and digital circuit design will be required. Prerequisites: ECE 211 with a grade C or better.

Computer Organization and Design

ECE 485-01, LEC/ CRN: 31999
Professor: Suresh Borkar
TR / 5:00 to 7:40 p.m.
Mies / TBD
Session B / June 6–July 30

This course covers basic concepts and state-of-the-art developments in computer architecture: computer technology, performance measures, instruction set design, computer arithmetic, controller and datapath design, memory systems, pipelining, array processing, parallel processing, multiprocessing, abstract analysis models, input-output systems, relationship between computer design and application requirements, and cost/performance tradeoffs. Students will complete a project implementing a version of multiple-cycle processor. Credit will be given for either ECE 485 or CS 470, but not both.
Computer Organization and Design
ECE 485-02, LEC/ CRN: 32000
Professor: Suresh Borkar
Internet Course
Session B / June 6–July 30

This course covers basic concepts and state-of-the-art developments in computer architecture: computer technology, performance measures, instruction set design, computer arithmetic, controller and datapath design, memory systems, pipelining, array processing, parallel processing, multiprocessing, abstract analysis models, input-output systems, relationship between computer design and application requirements, and cost/performance tradeoffs. Students will complete a project implementing a version of multiple-cycle processor. Credit will be given for either ECE 485 or CS 470, but not both.

Computer Organization and Design
ECE 485-03, LEC/ CRN: 32126
Professor: Suresh Borkar
India International Internet
Session B / June 6–July 30

This course covers basic concepts and state-of-the-art developments in computer architecture: computer technology, performance measures, instruction set design, computer arithmetic, controller and datapath design, memory systems, pipelining, array processing, parallel processing, multiprocessing, abstract analysis models, input-output systems, relationship between computer design and application requirements, and cost/performance tradeoffs. Students will complete a project implementing a version of multiple-cycle processor. Credit will be given for either ECE 485 or CS 470, but not both.

Power System Analysis
ECE 418-01, LEC/ CRN: 33376
Professor: Mohammad Hassan Modir Shanechi
MW / 5:00 to 7:40 p.m.
Mies / TBD
Session B / June 6–July 30

Transmission systems analysis and design. Large scale network analysis using Newton-Raphson load flow. Unsymmetrical short-circuit studies. Detailed consideration of the swing equation and the equal-area criterion for power system stability studies. Credit will be given for ECE 418 or ECE 419, but not for both.

Power Systems Analysis with Laboratory
ECE 419-01, LEC/ CRN: 33377
Professor: Mohammad Hassan Modir Shanechi
MW / 5:00 to 7:40 p.m.
Mies / TBD
Session B / June 6–July 30

Transmission systems analysis and design. Large scale network analysis using Newton-Raphson load flow. Unsymmetrical short-circuit studies. Detailed consideration of the swing equation and the equal-area criterion for power system stability studies. Use of commercial power system analysis tool to enhance understanding in the laboratory.

Signals and Systems
ECE 308-01, LEC/ CRN: 31743
Professor: Mohammad Hassan Modir Shanechi
MW / 1:50 to 4:30 p.m.
Mies / TBD
Session B / June 6–July 30

Time and frequency domain representation of continuous and discrete time signals. Introduction to sampling and sampling theorem. Time and frequency domain analysis of continuous and discrete linear systems. Fourier series convolution, transfer functions. Fourier transforms, Laplace transforms, and Z-transforms.

Communications
Communication in Politics
COM 374-01, LEC/ CRN: 33075
Professor: Gregory Pulliam
MW / 3:00 to 5:40 p.m.
Mies / SB-213
Session B / June 6–July 30

This course introduces students to the general theories and practices of political campaign communication today. It investigates how those rules and types apply in the current presidential campaign. More generally, the course teaches students to produce written and oral discourse appropriate to the humanities.

History of the Ancient Mediterranean
HIST 344-01, LEC/ CRN: 33073
Professor: Keith Green
MW / 12:50 to 4:00 p.m.
Mies / SB-204
Session C / July 5–August 13

Students gain an understanding of the history and culture of Greece, Rome, and ancient Palestine. Walk a mile in someone else’s sandals while tracing the early foundations of Western culture. Using disciplined analysis and creative interpretation to reconstruct aspects of ancient civilizations, students are challenged to escape their own personal and cultural perspectives.

Humanities
Topics in Humanities: Science Fiction and Pop Culture
HUM 200-01, LEC/ CRN: 32636
Professor: Andrew Roback
TR / 12:50 to 4:00 p.m.
Mies / SB-212
Session C / July 5–August 13

One-time or initial versions of course topics equivalent to HUM 202, 204, 206, and 208. Topics will introduce students to the humanities at IIT and to provide intensive instruction in writing.

Topics in Humanities: Gaming Around the Globe
HUM 380-01, LEC/ CRN: 32293
Professor: Carly Kocurek
International Program
July 11 to August 5

An investigation into a topic of current or enduring interest in the humanities, which does not fit neatly into standard categories.
Short Fiction

LIT 309-01, LEC/ CRN: 33074
Professor: Catherine Ramsdén
MW / 12:30 to 3:40 p.m.
Mies / WH-116
Session A / May 23–July 2

A formal and thematic analysis of a diverse selection of works of short fiction. The selection will be announced by the instructor when the course is scheduled.

INDUSTRIAL TECHNOLOGY AND MANAGEMENT

Facilities and Construction Administration

INTM 413-01, LEC/ CRN: 30223
Professor: David Arditi
MW / 6:25 to 9:05 p.m.
Mies / SB-220
Session B / June 6–July 30

This course covers fundamentals of project administration and characteristics of the construction industry. Pre-construction discussion includes technical and economic feasibility, project delivery systems, documents, bonding, and bidding. Duties and liabilities of parties at pre-contract stage and during contract administration to include scheduling and time extensions, payments, retentionage, substantial and final completion, change orders, suspension of work, contract termination, and dispute resolution. Labor law, labor relations, safety, and general management of a construction company.

Facilities and Construction Administration

INTM 413-02, LEC/ CRN: 32221
Internet Course
Session B / June 6–July 30

This course covers fundamentals of project administration and characteristics of the construction industry. Pre-construction discussion includes technical and economic feasibility, project delivery systems, documents, bonding, and bidding. Duties and liabilities of parties at pre-contract stage and during contract administration to include scheduling and time extensions, payments, retentionage, substantial and final completion, change orders, suspension of work, contract termination, and dispute resolution. Labor law, labor relations, safety, and general management of a construction company.

Issues in Industrial Sustainability

INTM 459-01, LEC/ CRN: 32602
Professor: Blake Davis
MW / 6:25 to 9:05 p.m.
Mies / SB-238
Session B / June 6–July 30

Examines the concept of sustainability and its application in the industrial environment. Identifies underlying stresses on natural and human environments and the resultant problems for business and society including legal, ethical, and political issues related to sustainability. Global warming, peak oil, and commodity pricing are considered as indicators of the need for improvements in sustainability. Industrial ecology will be discussed as well as strategies for developing sustainable practices in manufacturing, power generation, construction, architecture, logistics, and environmental quality. Coverage includes case studies on businesses that have developed successful sustainability programs.

Operations Management

INTM 410-01, LEC/ CRN: 33348
Professor: Gurram Gopal
TR / 6:25 to 9:05 p.m.
Mies / SB-111
Session B / June 6–July 30

Focuses on core processes within an organization—the activities that add value. An operations strategy depends on the industrial sector as well as the organization. This course introduces a variety of qualitative and quantitative tools for such activities as project management, process analysis, job design, forecasting, resource planning, productivity, quality, inventory, and scheduling. The objective of this course is to provide the framework for integrating approaches covered in other INTM courses.

INFORMATION TECHNOLOGY

A+ Certification Training

IT 301-01, B/ CRN: 33352
Professor: Vasilios Pappademetriou
TR / 6:00 to 9:35 p.m.
Mies / TS-2033
Session B / June 6–July 30

Participants study the basics of computer architecture and learn to use a contemporary operating system. Hardware requirements, hardware components, software compatibility, and system installation topics are covered along with post-installation, storage, security and system diagnosis, and repair. Topics also include discussion of current and future technology industry trends.
A broad introduction to object-oriented programming and the related knowledge necessary to program in a contemporary programming language. This would include coverage of an Application Development Kit, a standard integrated Development environment, and the use of GUI components.

Fundamentals of Web Development

IT-D 361-01, B/ CRN: 33355
Professor: Daniel Krieglstein
MW / 6:00 to 9:10 p.m.
Mies / WH-115
Session A / May 23–July 2

This course will cover the creation of Web pages and sites using HTML, CSS, Javascript, jQuery, and graphical applications as well as the client and server architecture of the Internet and related web technologies. The creation and deployment of modern, standards-compliant web pages are addressed. Students create and deploy a Web site with multiple pages and cross-linked structures.

Fundamentals of Web Development

IT-D 361-02, B/ CRN: 33356
Professor: Daniel Krieglstein
Internet Course
Session A / May 23–July 2

This course will cover the creation of Web pages and sites using HTML, CSS, Javascript, jQuery, and graphical applications as well as the client and server architecture of the Internet and related web technologies. The creation and deployment of modern, standards-compliant web pages are addressed. Students create and deploy a Web site with multiple pages and cross-linked structures.

Open Source Programming

IT-D 413-01, B/ CRN: 33357
Professor: James Papademas
MW / 6:25 to 9:05 p.m.
Mies / SB-212
Session B / June 6–July 30

Contemporary open-source programming languages and frameworks are presented. The participant considers design and development topics in system, graphical user interface, network, and web programming. Dynamic scripting languages are covered using object-oriented, concurrent, and functional programming paradigms. Concepts gained throughout the course are reinforced with numerous exercises which will culminate in an open-source programming project.

Linux+ Certification Training

IT-O 456-01, B/ CRN: 33367
Professor: Raymond Trygstad
TR / 10:00 a.m. to 12:40 p.m.
Mies / SB-213
Session B / June 6–July 30

Students learn to set up and configure an industry-standard open source operating system, including system installation and basic system administration; system architecture; package management; command line commands; devices, file systems, and the file system hierarchy standard. Also addressed are applications, shells, scripting and data management; user interfaces and desktops; administrative tasks; essential system services; networking fundamentals; and security, as well as support issues for open source software. Multiple distributions are covered with emphasis on the two leading major distribution forks.

Network+ Certification Training

IT-O 440-01, B/ CRN: 33365
Professor: Louis McHugh
MW / 6:00 to 9:35 p.m.
Mies / SB-213
Session B / June 6–July 30

This course covers current and evolving data network technologies, protocols, network components, and the networks that use them, focusing on the Internet and related LANs. The state of worldwide networking and its evolution will be discussed. This course covers the Internet architecture, organization, and protocols including Ethernet, 802.11, routing, the TCP/UDP/IP suite, DNS, Bluetooth, SNMP, DHCP, and more. Participants will be presented with Internet-specific networking tools for searching, testing, debugging, and configuring networks and network-connected host computers. There will be opportunities for network configuration and hands-on use of tools.
Network+ Certification Training

IT-O 440-02, B/ CRN: 33366
Professor: Louis McHugh
Internet Course
Session B / June 6–July 30

This course covers current and evolving data network technologies, protocols, network components, and the networks that use them, focusing on the Internet and related LANs. The state of worldwide networking and its evolution will be discussed. This course covers the Internet architecture, organization, and protocols including Ethernet, 802.11, routing, the TCP/UDP/IP suite, DNS, Bluetooth, SNMP, DHCP, and more. Participants will be presented with Internet-specific networking tools for searching, testing, debugging, and configuring networks and network-connected host computers. There will be opportunities for network configuration and hands-on use of tools.

Topics in Information Security

IT-S 479-02, LEC/ CRN: 33371
Professor: Bonnie Goins
Internet Course
Session A / May 23–July 2

This course will cover a particular topic in Information Security, varying from semester to semester, in which there is particular student or staff interest.

Database Security

IT-S 428-01, LEC/ CRN: 33369
Professor: Katherine Papademas
MW / 6:25 to 9:05 p.m.
Mies / SB-239
Session B / June 6–July 30

Participants will engage in an in-depth examination of topics in data security including security considerations in applications and systems development, encryption methods, cryptography law and security architecture and models.

ITMD

Data Modeling and Applications

ITM 361-01, B/ CRN: 32638
Professor: Vasilios Pappademetriou
Mies / TS-2033
Session B / June 6–July 30

Students study the basics of computer architecture and learn to use a contemporary operating system. Hardware requirements, hardware components, software compatibility, and system installation topics are covered along with post-installation, storage, security and system diagnosis, and repair. Topics also include discussion of current and future technology industry trends.

ITM 311-02, B/ CRN: 31668
Professor: Sheikh Shamsuddin
Internet Course
Session B / June 6–July 30

A broad introduction to object-oriented programming and the related knowledge necessary to program in a contemporary programming language. This would include coverage of an Application Development Kit, a standard integrated Development environment, and the use of GUI components.

Database Security

IT-S 428-02, LEC/ CRN: 33369
Professor: Katherine Papademas
MW / 6:25 to 9:05 p.m.
Mies / SB-239
Session B / June 6–July 30

Participants will engage in an in-depth examination of topics in data security including security considerations in applications and systems development, encryption methods, cryptography law and security architecture and models.

ITMD

Data Modeling and Applications

ITM 421-01, B/ CRN: 32640
Professor: Luke Papademas
MW / 6:25 to 9:05 p.m.
Mies / RE-241
Session B / June 6–July 30

Basic data modeling concepts are introduced. Hands-on database design, implementation, and administration of single-user and shared multi-user database applications using a contemporary relational database management system.

ITM 421-02, B/ CRN: 32641
Professor: Luke Papademas
Internet Course
Session B / June 6–July 30

Basic data modeling concepts are introduced. Hands-on database design, implementation, and administration of single-user and shared multi-user database applications using a contemporary relational database management system.

Fundamentals of Web Development

ITMD 361-01, B/ CRN: 33143
Professor: Daniel Krieglstein
MW / 6:00 to 9:10 p.m.
Mies / WH-115
Session A / May 23–July 2

This course will cover the creation of Web pages and sites using HTML, CSS, Javascript, jQuery, and graphical applications as well as the client and server architecture of the Internet and related web technologies. The creation and deployment of modern, standards-compliant web pages are addressed. Students create and deploy a Web site with multiple pages and cross-linked structures.
Open Source Programming
ITMD 413-01, B/ CRN: 31927
Professor: James Papademas
MW / 6:25 to 9:05 p.m.
Mies / SB-212
Session B / June 6–July 30

Contemporary open-source programming languages and frameworks are presented. The student considers design and development topics in system, graphical user interface, network, and web programming. Dynamic scripting languages are covered using object-oriented, concurrent, and functional programming paradigms. Concepts gained throughout the course are reinforced with numerous exercises which will culminate in an open-source programming project.

Open Source Programming
ITMD 413-02, B/ CRN: 31928
Professor: James Papademas
Internet Course
Session B / June 6–July 30

Contemporary open-source programming languages and frameworks are presented. The student considers design and development topics in system, graphical user interface, network, and web programming. Dynamic scripting languages are covered using object-oriented, concurrent, and functional programming paradigms. Concepts gained throughout the course are reinforced with numerous exercises which will culminate in an open-source programming project.

Introduction to Data Networks and the Internet
ITMO 440-01, B/ CRN: 33103
Professor: Louis McHugh
MW / 6:00 to 9:35 p.m.
Mies / SB-213
Session B / June 6–July 30

This course covers current and evolving data network technologies, protocols, network components, and the networks that use them, focusing on the Internet and related LANs. The state of worldwide networking and its evolution will be discussed. This course covers the Internet architecture, organization, and protocols including Ethernet, 802.11, routing, the TCP/UDP/IP suite, DNS, SNMP, DHCP, and more. Students will be presented with Internet-specific networking tools for searching, testing, debugging, and configuring networks and network-connected host computers. There will be opportunities for network configuration and hands-on use of tools.

Introduction to Data Networks and the Internet
ITMO 440-02, B/ CRN: 33104
Professor: Louis McHugh
Internet Course
Session B / June 6–July 30

This course covers current and evolving data network technologies, protocols, network components, and the networks that use them, focusing on the Internet and related LANs. The state of worldwide networking and its evolution will be discussed. This course covers the Internet architecture, organization, and protocols including Ethernet, 802.11, routing, the TCP/UDP/IP suite, DNS, SNMP, DHCP, and more. Students will be presented with Internet-specific networking tools for searching, testing, debugging, and configuring networks and network-connected host computers. There will be opportunities for network configuration and hands-on use of tools.

Introduction to Open Source Operating Systems
ITMO 456-02, B/ CRN: 32317
Professor: Raymond Trygstad
Internet Course
Session B / June 6–July 30

Students learn to set up and configure an industry-standard open source operating system including system installation and basic system administration; system architecture; package management; command-line commands; devices, filesystems, and the filesystem hierarchy standard. Also addressed are applications, shells, scripting and data management; user interfaces and desktops; administrative tasks; essential system services; networking fundamentals; and security, as well as support issues for open source software. Multiple distributions are covered with emphasis on the two leading major distribution forks.

Topics in Information Security: Cyber Security Frameworks
ITMS 479-02, LEC/ CRN: 32018
Professor: Bonnie Goins
Internet Course
Session A / May 23–July 2

This course will cover a particular topic in Information Security, varying from semester to semester, in which there is particular student or staff interest. This course may be taken more than once but only 9 hours of ITMS 479/579 credit may be applied to a degree.

Topics in Information Security: Cyber Security Frameworks
ITMS 479-01, LEC/ CRN: 33146
Professor: Bonnie Goins
TR / 6:05 to 9:25 p.m.
Mies / WH-115
Session A / May 23–July 2

This course will cover a particular topic in Information Security, varying from semester to semester, in which there is particular student or staff interest. This course may be taken more than once but only 9 hours of ITMS 479/579 credit may be applied to a degree.

Database Security
ITMS 428-01, LEC/ CRN: 33341
Professor: Katherine Papademas
MW / 6:25 to 9:05 p.m.
Mies / SB-239
Session B / June 6–July 30

Students will engage in an in-depth examination of topics in data security including security considerations in applications and systems development, encryption methods, cryptography law and security architecture and models.
Heat and Mass Transfer
MMAE 323-01, LEC/ CRN: 32677
Professor: Mete Alpan
TR / 5:00 to 8:10 p.m.
Mies / WH-116
Session A / May 23–July 2

Basic laws of transport phenomena, including: steady-state heat conduction; multi-dimensional and transient conduction; forced internal and external convection; natural convection; heat exchanger design and analysis; fundamental concepts of radiation; shape factors and network analysis; diffusive and convective mass transfer; phase change, condensation and boiling.

Introduction to Mechanics
MMAE 200-01, LEC/ CRN: 31074
Professor: John Cesarone
MW / 1:00 to 4:10 p.m.
Mies / WH-115
Session A / May 23–July 2

Mechanics of Solids
MMAE 202-01, LEC/ CRN: 30352
Professor: Aiman Shibli
TR / 5:00 to 8:10 p.m.
Mies / WH-116
Session A / May 23–July 2

Thermodynamics
MMAE 320-01, LEC/ CRN: 30355
Professor: Francisco Ruiz
MW / 10:00 a.m. to 1:10 p.m.
Mies / RE-241
Session A / May 23–July 2

Introduction to thermodynamics including properties of matter; First Law of Thermodynamics and its use in analyzing open and closed systems; limitations of the Second Law of Thermodynamics; entropy.

Advanced Mechanics of Solids
MMAE 302-01, LEC/ CRN: 32646
Professor: Roberto Cammino
TR / 11:00 a.m. to 2:10 p.m.
Mies / SB-220
Session A / May 23–July 2

Advanced Mechanics of Solids
MMAE 302-02, LEC/ CRN: 32799
Professor: Roberto Cammino
Internet Course
Session A / May 23–July 2

Design of Machine Elements
MMAE 332-01, LEC/ CRN: 32520
Professor: Roberto Cammino
MW / 11:00 a.m. to 1:25 p.m.
Mies / SB-213
Session B / June 6–July 30

Students will gain an understanding of the basic elements used in machine design. These include the characteristics of gears, bearings, shafts, keys, couplings, fasteners, springs, electric motors, brakes and clutches, and flexible elements. Students will also learn mechanism types, linkage analysis, and kinematic synthesis.

Design of Machine Elements
MMAE 332-02, LEC/ CRN: 32876
Professor: Roberto Cammino
Internet Course
Session B / June 6–July 30

Students will gain an understanding of the basic elements used in machine design. These include the characteristics of gears, bearings, shafts, keys, couplings, fasteners, springs, electric motors, brakes and clutches, and flexible elements. Students will also learn mechanism types, linkage analysis, and kinematic synthesis.

Fluid Mechanics
MMAE 313-01, LEC/ CRN: 32033
Professor: Bruno Monnier
TR / 10:00 a.m. to 12:25 p.m.
Mies / RE-241
Session B / June 6–July 30

Basic properties of fluids in motion. Langrangian and Eulerian viewpoints, materials derivative, streamlines, etc. Continuity, energy, and linear and angular momentum equations in integral and differential forms. Integration of equations for one-dimensional forms and application to problems. Incompressible viscous flow; Navier-Stokes equations, parallel flow, pipe flow, and the Moody diagram. Introduction to laminar and turbulent boundary layers and free surface flows.
PHYSICS

General Physics II: Electricity and Magnetism

PHYS 221-01, LEC/ CRN: 30002
Professor: Yurii Shylnov
MW / 10:00 a.m. to 12:40 p.m.
Mies / SB-106
Session B / June 6–July 30

General Physics III for Engineers

PHYS 224-01, LEC/ CRN: 30003
Professor: Yurii Shylnov
TR / 10:00 a.m. to 12:40 p.m.
Mies / SB-225
Session B / June 6–July 30

General Physics I: Mechanics

PHYS 123-01, LEC/ CRN: 30001
Professor: Bhoopesh Mishra
MW / 6:25 to 9:05 p.m.
Mies / AM-222
Session B / June 6–July 30

PSYCHOLOGY

Topics in Psychology: Human Sexuality

PSYC 380-02, LEC/ CRN: 32591
Professor: Elisabeth Batchos
TR / 1:50 to 5:00 p.m.
Mies / WH-315
Session A / May 23–July 2

An investigation into a topic of current interest in psychology. The specific topic will be announced by the instructor when the course is scheduled.

Topics in Psychology: Sport Psychology

PSYC 380-01, LEC/ CRN: 31706
Professor: Kelly Kazukauskas
TR / 12:10 to 3:20 p.m.
Mies / SB-223
Session C / July 5–August 13

An investigation into a topic of current interest in psychology. The specific topic will be announced by the instructor when the course is scheduled.

POLITICAL SCIENCE

Politics of Science and Technology

PS 332-01, LEC/ CRN: 33099
Professor: Matthew Shapiro
MW / 1:50 to 5:00 p.m.
Mies / WH-315
Session A / May 23–July 2

Explores the complex interrelationships among science, technology, and politics, with emphasis on the political issues created by contemporary scientific advances. The course gives roughly equal attention to the politics of scientific discovery; the development of organizations providing scientific advice to government; the impact of industrialized science and advanced technology on the economy and society; and the growing debate over the social implications of science and technology and how they can be predicted, measured, and controlled.

SOCIOLOGY

Introduction to the Sociology of Space

SOC 211-01, LEC/ CRN: 32320
Professor: Ullica Segerstrale
MW / 5:30 to 8:40 p.m.
Mies / WH-315
Session A / May 23–July 2

This introductory sociology course deals with people’s general experience of space and how space and spatial arrangements affect people, social interaction, and the sense of community. It is designed to develop knowledge and understanding as well as analytical and perceptive skills. Our experiences of the spatial dimension of reality will be examined from various perspectives: emotional; cognitive; functional; symbolic; and cross-cultural. Our study objects range from everyday experiences to questions of community and city planning. Basic sociological concepts and research methods will be introduced and related to the topics covered. This course is required for SOC 311 (Social Use of Space).

Learn online! Internet-based courses are also available.
Special Topics: Global Cities: Osaka

SSCI 385-01, LEC/ CRN: 33101
Professor: Rebecca Steffenson
International Program
July 11–August 19

Investigates an interdisciplinary topic of current interest in the social sciences. Course may be taken multiple times provided the topic is different each time.

Global Health

SSCI 318-01, LEC/ CRN: 33102
Professor: Patrick Ireland
TR / 9:00 a.m. to 12:10 p.m.
Mies / SB-204
Session C / July 5–August 13

Multidisciplinary course that addresses the most critical issues and initiatives in global health, covering the history of the field and its basic principles and goals, the determinants of health and its links with development, competing perspectives on global health challenges and ways to meet them, the most important causes of disease and death, and the organizations and governance mechanisms that are endeavoring to improve outcomes. The course is geared toward developing theories and methods to understand the social, economic, political, and environmental causes of health outcomes with a focus on disadvantaged communities and health inequalities.

Social Science Research Methods

SSCI 209-01, LEC/ CRN: 32587
Professor: Matthew Shapiro
TR / 12:50 to 4:00 p.m.
Mies / SB-204
Session C / July 5–August 13

Introduces students to explanation in the social sciences and both qualitative and the quantitative research methods. Topics covered include the formulation of research questions, measurement, data collection, survey research, significance tests, experimental and quasi-experimental design, sampling, and various techniques of qualitative research.